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We develop and analyze a family of mappings which enhance the
accuracy of Chebyshev pseudo-spectral methods in approximating
functions with multiple regions of localized rapid variation (layers).
The mapping family depends on 3N — 1 free parameters, where N
is the number of layers. N parameters depend upon the locations
of the layers and on the widths of the layers, while the other N —
1 paramcters depend on the resolution of each layer relative to
the first layer. The parameters can be determined adaptively by
minimizing a functional which measures the error of the approxima-
tion. Techniques to simplify the minimization process are devel-
oped. We further demonstrate that the appropriate choice of map-
pings can lead to a significant reduction in the condition number of
matrices associated with Chebyshev pseudo-spectral differentation,
We illustrate the effectiveness of the proposed mapping and adap-
tive procedure by examples in which we approximate (i} given func-
tions exhibiting multiple layers and (ii) the solution of a system of
partial differential equations modeling combustion in counterflow-
ing fets so that two distinct flames occur.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Chebyshev pseudo-spectral methods have been employed in
the solution of partial differential equations occurring in a wide
variety of application arcas. These methods have been shown
to offer significant benefits in accuracy over other methods, such
as finite difference methods, when the solution is sufficiently
smouth, However, the accuracy of these methods tends 10 be
degraded when approximating solutions which exhibit locatized
regions of rapid variation {layers). Such problems ocewr in
many areas ol application, such as combustion, {luid dynamics,
solidification, solid mechantes, and wave propagation, to e
but o few. In particulir, Chebyshev pseudo-spectral approxima-
tions to such functions may exhibit spurious oscillations which
can lead to nonlinear instabilities or spurious predictions of
solution behavior.

In previous work, it has been shown that the use ol appropri-
ately chosen mappings can allow the benefits of Chebyshev
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pseudo-spectrat methods (high accuracy) to be realized for
problems in which there is either a single layer or multiple,
closely spaced layers, e.g..{3. 7, 15]. The usc of such mappings
is an essential lcature of the adaptive pseudo-spectral method
which has been used 10 campute satutions to o large class of
problems in combustion and other areas [1, 3-6, 14, 15]. In
this method a preseribed family of mappings, depending on a
small number of free parameters, is empleyed to transform
the independent variable or variables of the partial differential
equation. As time evolves specific mappings are adaptively
chosen from this family by minimizing a functional of the
solution which measures the error in the approximation. The
effect of each mapping is to represent the solution in a computa-
tional coordinate system in which it varies more gradually.
Equivalently, the mapping introduces new basis functions that
are suitable for the approximation of functions exhibiting layer
behavior. The adaptive pseudo-spectral method allows the bene-
fits of pseudo-spectral methods, e.g., high accuracy, to be real-
ized for problems where rapid spatial variations occur.

A crucial element of this method is the choice of the family
of mappings employed. The mappings proposed previously
have been primarily designed for functions which exhibit either
a single layer or several closely spaced layers which are effec-
tively treated as a single layer. In this paper we address the
problem of approximating functions exhibiting multiple, widely
separated layers.

The accurate resolution of functions exhibiting layer type
behavior is particularly important in combustion. Typically,
the activation encrgies of the chemical reactions occurring in
combustion are large. As a result the chemical reaction terms
are significant only in narrow regions termed reaclion zones.
In the limit of infinite aclivation energy, reaction zones shrink
to surfaces termed Mame fronts, across which certain jump
conditions hold. While the flame front model is well suited for
mathematical analysis (e.g., [18]), numerical computations are
generally conducted for the case of finite (but large} activation
energy where the flame occupies a region of non-zero (but
small) thickness. [n this case the solution is a smooth function,
with large gradients across the narrow reaction zone.

In many applications the solution can exhibit multiple layers.
In combustion, for example, there can be multiple reaction
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zones associated, e.g., with the production of intermediate spe-
cies via multiple reaction mechanisms, e.g., [24]. Another ex-
ample, considered in this paper, is that of flames in counterfiow-
ing jets. In this case there are two opposing jets of a premixed
combustible mixture resulting in two distinct, although possibly
interacting, flames. Such flames have been studied experimen-
tally to reveal the role of flame stretch on flame patierns and
dynamics [16]. We note that other physical mechanisms can
also tead to multiple layers, for example, in filtration combus-
tion {e.g., {19]).

In order to employ the adaptive pseudo-spectral method for
such problems it is necessary to develop methods to resolve
functions exhibiting multiple layers, which need not be closely
spaced. The primary objective of this paper is to describe an
extension of the family of mappings presented in [7] to account
for an arbitrary number of layers. Such an extended family
involves additional parameters. In fact, if there are N layers,
the mapping family we propose has 3N — 1 free parameters
which must be determined, These parameters can be naturally
divided into N parameters related to the locations of the layers,
N parameters related to the widths of the layers, and N — 1
parameters related to the resolution of each layer relative to
the first layer. While all of these parameters can in principle
be determined by the same minimization problem considered
in [3] for the case of a two-parameter mapping, we propose
techniques to simplify the minimization problem. In Section 2
we describe the numerical method. In Section 3 we present
results, both for the approximation of prescribed functions ex-
hibiting two layers, as well as for the approximation of solutions
to a system of partial differential equations modeling combus-
tion in counterflowing jets. We remark that the application
of Chebyshev pseudo-spectral methods to problems with two
layers, with the ensuing benefit of spectral accuracy, is made
feasible due to the proposed family of mappings.

In Section 4 we consider the effect of the mappings on
the conditioning of the resulting differentiation matrices. The
results demonstrate that for a large range of parameter space
the mappings can serve to reduce the condition number of the
associated differentiation matrices and thereby the resulting
round off error in implementing pseudo-spectral methods. The
overall error can be reduced even for functions which do not
exhibit layer behavior.

2. NUMERICAL METHOD

We first describe the standard pseudo-spectral method. This
description will be brief, since details can be found in {8, 10,
13]. For concreteness we consider a generic one-dimensional
evolution equation

ui'=ux+un(+R(u)! (l)

where R(u) represents a nonlinear term not involving deriva-
tives. We assume that the problem has been scaled to the
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interval I, {—1 = x = 1}. The solution is approximated by
expanding u as a finite sum of Chebyshev polynomials

J
u=u,= }:U a;Ti(x). (2)

In the pseudo-spectral method the expansion coefficients a; are
obtained from collocation; that is, the function «, is forced to
solve (1} at a set of J + 1 collocation points x;. The unknowns
of the problem are the values u, at x;. Pseudo-spectral methods
are particularly well suited to nonlinear problems because the
nonlinearities are evaluated directly in terms of function values
at the collocation points. The expansion (2} is used only for
the purposes of computing spatial derivatives. Typically the
collocation points are the Gauss—Lobatto points,

x;=cos(july (j=0,..,4).

The major advantage of pseudo-spectral methods over finite
difference methods is that they can exhibit enhanced accuracy
for a fixed number of computational degrees of freedom. In
fact, pseudo-spectral methods exhibit infinite order accuracy.
That is, the error ¢ = 4 — u, satisfies, in an appropriate norm,

lel = 00 3)

for all r = 0 and sufficiently differentiable functions « [10].
The constants involved in the order relation in {3) depend upon
the size of the derivatives of w. This is in contrast to finite
difference methods where the error is of a fixed order, for
example, O(J %) for a second-order method. In practice, spectral
methods have been shown to be significantly more accurate
than finite difference methods for a variety of problems in areas
such as fluid dynamics and meteorology [8, 10, 13].

Pseudo-spectral methods are, however, prone to inaccuracies
and oscillations when used to approximate functions which
exhibit layers, i.e., localized regions of rapid variation. The
approximation of such functions can often be improved by
employing mappings. Specifically, assume that a family of map-
pings,

x = g(s, o), (4)

is introduced. Here x represents the physical coordinate, —1 =
s = 1 is the transformed (computational) coordinate, and o
denotes parameters to be determined in the course of the compu-
tation. The pseudo-spectral method can then be applied to the
transformed equation to approximate the transformed function
u(g(s, a), t). We note that the effect of the mapping can be
regarded as transforming the function to be approximated by
the expansion (2) from u(x) to the (hopefully) more gradually
varying u(g(s, &)). An alternative interpretation is to transform
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the basis functions from 7,{s) to the (hopefully more suitable)
TAq™'(x, o).

In [7] a family of mappings was presented which was shown
to be very effective in approximating functions exhibiting a
single layer or multiple closely spaced layers. It is instructive
to describe the inverse mapping

s=gq '(x,a) = 5o+ tan " (o {x — o ))/A, (3)

where a; and ¢, are parameters determining individual mem-
bers of the mapping family, while s, and A are determined so
that (5) maps the interval I univalently onto itself. In order for
our notation to be readily extendable to the case of multipte
layers, we employ a double index notation for «, where the
first index refers to the layer and the second index refers to
parameters associated with the layer.

In order to see that the inverse function s = ¢7'(x, ) is a
suitable mapping to transform functions exhibiting layer behav-
ior to more gradually varying functions, we note that (5} itself
exhibits layer behavior and the composite function ¢~ '(g(s, c),
o) = s is gradually varying. This suggests that for a function
exhibiting layer behavior the composite function will be gradu-
ally varying, provided e is properly chosen. As a mapping the
effect of (5) is to expand a region around the point x = «; of
width approximately o, and compress the remainder of 1. Thus
in terms of approximating a given function the parameters
and ¢; can be interpreted as the inverse width and the location
of the layer, respectively.

In the solution of partial differential equations, these proper-
ties of the solution are generally not known in advance and
may change during the course of the computation. A procedure
to determine « adaptively was presented in [3, 5]. In this
adaptive procedure e is determined so as to minimize a func-
tional of the solution which measures the error in the approxima-
tion of the solution by its Chebyshev expansion. The functional,

1 112
Lig) = (f_l (L2g)iw(s) ds) , (6

where
wis)=V1 -5 L=w(s)dlds,

derived in [3] has been shown to be an effective measure of this
approximation error. In the adaptive pseudo-spectral method (6)
is evaluated for different values of o until a minimum is found.
The integral in (6) is evaluated in the physical coordinate x by
an explicit change of variable, making use of the fact that the
derivative of the mapping can be computed explicitly. It has
been shown in [14] that (6) is equivalent to the functional
wi23L, e ja;)’, where a; is the coefficient of T; in the Cheby-
shev expansion of g and ¢, = 2, ¢; = 1, j > 0. In addition to
the family of mappings there are other important aspects of the
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adaptive procedure such as the mechanism by which a search
for a new coordinate system is triggered and the relationship
between the timestep and the mapping is chosen. These aspects
have been described in detail in {3, 5] and as the major focus
of this paper is the family of mappings, they are omiited here
for brevity.

Only a single layer can be expanded by the use of (5),
although the results in [7] demonstrate that accurate approxima-
tions can be obtained for functions with multiple layers that
are closely spaced. In order to deal with multiple layers that
are widely separated it is necessary to extend the mapping
family (5). For simplicity we first consider the case of two
layers. In this case the extended family of mappings is

s=g7"'(x, ) = 59 + (tan""(a,(x — app)
7
+ tan"(aey (x — ap))V/A, O

where for the ith layer «; and o, are parameters to be deter-
mined and s, and A are determined so that (7) maps the interval

[ univalently onto itself,

Ky — Ky

80—

K, + Kz, A= (Kl + Kz)lzs

where

k)= tan"(a;; (1 + ap)) + tan " oz (1 + @),
K = tan "o (1 — o)) + tan Mo (1 — an)).

It is clear from (7) that o, § = 1, 2, specify the locations of
the layers, while «;, i = 1, 2, specify the inverse widths of
the layers. We note that (7) reduces to (5) when @, = a4 and
ey = ez The construction of (7) is motivated by the notion
of adding two layers, a technique commonly employed in the
mathematical analysis of problems exhibiting layer behavior.

We note that (7) affords the same overall resolution to both
layers. It is possible to extend the mapping family to allow for
differing resolution of each layer. This can be done by the
mapping family

§ =g ' (x, o) = 59 + (ory3tan ooy (x — @)

_ (8)
+ agtan™ (o (x — ap))HA,

where without loss of generality we can take o;; = 1 so that
oy, 15 a measure of the resolution for the second layer relative
to the first layer. In the numerical computations presented here
we consider only the case of (7), ie., apn = 1.

In applications it is necessary to evaluate the mapping rather
than the inverse mapping, i.e., to solve for x given s, where s
is typically one of the Gauss—Lobatto peints. While this can
always be done numerically, for the special case of (7) (ie.,
for two layers with ay; = 1) it is possible to evaluate the
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mapping explicitly by employing trigonometric identities. Spe-
cifically, we have

x=bxVz +1z, 9

where

b= (o + an)— m(l/ay + Vay),
7= cot(Als — 50)),
21 = {(ay — an) + (/e — ”ﬂn))z,

=41+ "'2)/(04110621)-

The choice of sign in (9} depends on the sign of 7. In addition,
an expansion can be derived for A(s — s;) near 0, where 1 —
* o, depending on the sign of s — 5o, If w = A(s — s5;) then
for |w| sufficiently small we have

X = j’g + X w+ jhwz,
where

Xo = (aay + o ag)/(ay + o),

= Wy + ag) + (e (e — o) (e + o)’
and
Ty = Xano(a — an ey — an) o + o)’

The implementation of (7) within the adaptive psendo-spec-
tral method requires the adaptive determination of four parame-
ters (e, £, § = 1, 2). In principle this can be done by varying
these parameters and minimizing (6) for either one of the un-
knowns or for a combination of the unknowns of the problem,
In many instances approximate techniques can be employed to
reduce the order of this minimization problem. For example,
it is often the case that the locations of the layers can be
determined from functionals of the solution, without recourse
to a minimization procedure, This can be done, for example,
by locating extrema of the second derivatives of the dependent
variables. In many combustion problems it is possible to deter-
mine the locations of the reaction zones by determining maxima
of the reaction terin, as this characterizes the flame. We have
incorporated such technigues into our combustion computations
and do not include e, and 5, in the minimization. In addition,
it is often possible to decouple the minimization problem for
o and a, into two minimization problems for ¢, and ey,
separately. We note that e, and o, represent the widths of
two layers, and if the layers are sufficiently separated, these
parameters are not strongly coupled. We first keep oy, fixed at
its old value and minimize (6), varying only «,,. We then keep
o fixed and minimize, varying only ;). This process is then

163

iterated until convergence is attained. In all computations that
we have performed at most five iterations have been required.

In two-dimensional calculations « can be chosen to be a
function of a transverse coordinate, leading to a fully two-
dimensional mapping. An alternative is to choose e indepen-
dent of the transverse coordinate by averaging over all the
transverse directions. The first approach is described in detail
in {4]. This method requires the evaluation of additional terms
in the equation and is more costly for each timestep. In the
two-dimensional computations presented here the use of aver-
age values of « is sufficient to illustrate the nonplanar structure
of the flame and the effectiveness of the proposed mapping
famnily.

The family (8) can be readily extended to account for more
than two layers. If ¥ layers are to be accounted for we have

s=qg ix,a)=s5;+ (i optan o (x — aiz))!:\, (1

where 5, and A are suitably determined so that the resulting
mapping maps [ univalently onto itself and oy is 2 measure
of the resolution for the ith layer relative to the first layer
(cr;; = 1). For completeness we give expressions for s, and
A for (10),

se=(S-— S(S-+8.), A=(S_+8.,y2,

where

S. = (Ei: astan” oy (1 = O"Z)))'

Finally we note that other functions exhibiting similar behavior,
for example tanh, can be incorporated within the methodology
described above to created other families of mappings suitable
for multiple layers.

3. ACCURACY

We first consider the effectiveness of the mapping family
(7) in approximating given functions exhibiting two separated
layers. We consider maximum norms for the errors in approxi-
mating the function u and itrs first two derivatives by 4 Chebys-
hev expansion in the transformed coordinate, i.e., i = u,(s).
Thus in the physical coordinate x the approximation is u{g ™" (x,
«)). The Chebyshev polynomial approximation u;(s) is obtained
from collocation at the points

5;=cos(mild"), j=0,..,J. (11)

The errors are defined as
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E,= max (u(x) — udg™ (xp @),
£y = max (|u'x) — uilq™ . )],

E,= f]naﬁ(lu"(xJ) — 13 (g™ (x; ),
<<

where for £, and E, the maximum is taken over the points

X-4s, ), s;=cos(mill), j=0,..J, (12)

(i.e., the image of the points (11) under the mapping), while
for E, the maximum is taken over the points

x;=q(s, @), s;=cos(mjlt), j=0,.,7,
where J' ® J (we nole that by construction u(x) — udq™"'(x;,
«)) = 0 at the points (12)).

In order to assess the effectiveness of the proposed mappings
it is important to demonstrate both the abitity of the mappings to
yield accurate approximations to functions exhibiting multiple
layers and the ability of the adaptive procedure to determine
appropriate parameters of the mappings for problems with mul-
tiple layers. We have therefore designed our numerical experi-
ments to simulate the adaptive procedure as we have imple-
mented it for combustion problems. Specifically, since the
locations of the reaction zones can be estimated from maxima
of the reaction rate terms, a,, and o5, can be estimated without
resorting to a minimization procedure. In our approximation
results we specify these parameters beforehand. The parameters
ay and ay, are obtained by successive minimizations, so that
we first minimize (6) with respect to &, then with respect to
&y, and iterate until the results of the minimization do not
change. In practice at most five iterations are required for all
of the cases considered here.

We have found that (6} tends to somewhat overestimate the
parameters o and o, (a somewhat similar, but less pro-
nounced, tendency was observed in [7] for the case of a single
layer). We believe that one reason for this in the two-layer
case is that in the minimization the layers compete for more
resolution; i.e., there is a tendency for each layer to try to
increase its resolution at the expense of the other layer, thereby
leading to overpredictions of the inverse width parameters. In
order to compensate for this we modify (6) by adding a penalty
term which increases with a; and o, specifically the term
Yo -+ ay), to (6). All results presented below were obtained
with vy = 1. This does not always give the most accurate
approximation; in general, smaller errors can be obtained by
scanning the accuracy of the approximation as ¢, and o, are
varied. However, since the exact solution is not known in partial
differential equation applications, we illustrate the accuracy
that can be expected from a fixed adaptive procedure, as would
be employed in the solution of partial differential equations.
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We note that it is also possible to split the domain into two
subdomains, each encompassing one layer, and minimize (6)
separately for each subdomain.

We consider the approximation of functions exhibiting multi-
ple layers, specifically,

u(x) = tanh{or,(x — x)) + Stanh{o,(x — x3)) (13)

and

u(x) = exp(— (o (x — x)¥*/2)

14)
+ Sexp(— (ou(x — x;))%/2).

Results for illustrative values of 8, &y, o3, x,, and x, are pre-
sented in Table I for (13) and in Table II for (14). In the
approximations we use J' = 350 and J = 120, except where
noted. We specify beforehand that «v;; = x, and a;; = x;. The
parameters «;, and s, are obtained by minimization of (6)
with the added penalty term y(a,, + a3 ) over a grid with
spacing Acy = Aoy = 1. A more accurate minimization
is not needed in practice. Entries with “‘U’" in the columns
corresponding to mapping parameters, indicate that no mapping
was employed. The different cases illustrated in the tables are
distinguished by a case identifier (ID).

The parameters are chosen so that the layer regions for (14)
are generally narrower than for (13), and consequently the
approximation for (14) is more sensitive to values of o, and
¢y than for (13). In all computations the penalty term coefficient
vy = 1. We point out that all errors can be reduced by tuning
v; i.e., the limiting factor on accuracy is not the resolving power
of the family of mappings (7) but rather the ability of (6) with
the penalty term to select truly optimal mapping parameters
for cases with multiple layers. In using this method to solve
systems of partial differential equations, this parameter can be
chosen by experiment for the particular problem under consider-
ation; however, in both the approximation and combustion cases
presented here we have chosen to present the results with the
fixed value of vy = 1.

The results in Tables I and 11 demonstrate that the mappings
(7) allow dramatic improvements in the approximation by
Chebyshev pseudo-spectral expansions of functions with multi-
ple layers. Indeed, the mappings make the use of Chebyshev
pseudo-spectral methods for such functions feasible. We can
also infer from these results the properties of, and the problems
associated with, the adaptive Chebyshev pseudo-spectral ap-
proximation of functions with multiple layers. The first case in
each table, cases Cl1 and C21, respectively, is an example
where the layers are of equal size and thickness. In this case
the adaptive procedure selects a;, = ¢y as would be expected
to resolve two identical layers. In order to demonstrate the
number of points required for comparable accuracy without
mappings, errors for the unmapped case with J = 480 are given
(cases C12 and C22, respectively).
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TABLE 1

Results for Approximating u(x} = tanh(o(x — x)) + & tanh(ea(x — x))

& X Xy o o, ey [ £y E £ 1D
1.0 -0.5 0.5 50. 50, u u 275 % 107 4.55 X I° 2.91 x 102 Clt
1.0 -0.5 0.5 50. 50. 19. 19. 1.83 X 107° 1.05 X 1977 2.76 X 1073 Cl1
1.0 -0.5 0.5 50. 50. ) U 628 X 107 387 % 107% 2.85 x 1072 Ci12
05 -Q.5 LU} 50. 50. 19. 13, 117 % 107° 7.18 x 1077 4,14 x 10°* Cl3
0.1 —-0.5 0.5 50. 50. 20. 6. 7.68 X 107°¢ 245 x 1072 525 x 107 Cl4
1.0 -0.5 0.5 50. 25. 19. It 1.23 X 107* 3.03 x 1077 1.31 X 107 Cl15
0.1 —=0.5 0.5 50. 25. 20. LN 3.20 X 1078 549 x 107 1.70 x 107} Cl6
10.0 -05 0.5 30. 25. 14, 16. 260 % 107 389 % 10 1.66 % 107 Cc17
1.0 -9 0.0 50, 50. 15. 18. 1.84 x 107" 232 x 1078 9.79 X 10t Cl18

The major problem revealed is that of a degradation in accu-
racy when the amplitudes of the two layers differ significantly.
For the examples considered here, this degradation does not
become apparent until the amplitudes of the layers differ by
an order of magnitude. This can be seen by comparing case
C13 (C23), where é = 0.5, with case C14 (C24), where § =
0.1. We have determined that this is more of a deficiency of
the adaptive choice of parameters rather than of the mapping
itself. For these cases each layer has the same thickness (deter-
mined by o and o,) and the most accurate approximations
would occur for a;; = ;. For example, for (13) specifying
@ = oy = 19 with § = 0.1 leads to accuracy comparable to
that obtained when & = 1.0 and similarly for {14). Since the
functional (6) is a global functional, the effect of the minimiza-
tion is to force a reduction of the resolution of the smaller
amplitude layer with a corresponding increase in the resolution
of the larger amplitude layer. We note that in many instances
it is possible to know beforehand that the amplitudes of the
layers differ significantly, and thus compensate by either modi-
fying the penalty term or possibly splitting the domain into two
subdomains and minimizing over each subdomain. We do not
do this here, as we focus on the properties of the mapping family
with a fixed adaptive procedure to determine the parameters.

In cases C15, C16, C17 (C25, C26, C27) we constder the

approximation of two layers of differing thickness (&n/o =
00.5). The data indicates both that the mapping can resolve layers
of differing thicknesses and that the adaptive procedure can
distinguish the differing thicknesses as long as the broad layer
does not have a significantly greater amplitude than the nar-
rower layer. When § = 10, the adaptive procedure forces exces-
sive resolution of the broader layer, thus degrading the overall
accuracy. This is again due to the global nature of the functional
(6) and can also be accounted for by modifying the penalty
term or by splitting the domain for the evaluation of (6}, should
it be known in advance that the amplitudes of the layers are
sufficiently out of scale.

It has been shown previously that Chebyshev approximations
are more accurate for boundary layers than for interior layers
[7, 21]. Consequently smaller values of ), or a;, should be
required when the corresponding layers are close to the bound-
aries. The resuits with one of the layers close to the boundary
point x = —1 (cases C18 and C28, respectively) demonstrate
that minirnization of the functional (6) does indeed detect dif-
fering resolution requirements depending on the location of the
layer, producing a larger value for o, for the layer located at
x=10.

Finally, we point out that we have examined the case of a
single layer (§ = 0), employing the mapping (5), designed

TABLE 11

Results for Approximating u(x) = exp(—(o:(x — x\D¥2) + 8 exp(—(oa(x — x,)¥/2)

g X X | o) @y [ 29 E, E, E; ID
1.0 —{0.5 .5 100. 104, U U 1.53 X 107F 2.57 X 10 4.33 X 108 21
1.0 —0.5 0.5 100. 100. 30. 30. 343 % 1078 1.69 x 107° 534 x 107° C21
1.0 -0.5 0.5 100, 100, u U 4.88 x 107¢ 2.78 x 1078 1.47 X 10° C22
0.5 -0.5 05 100, 100. 30. 21 3.26 X 1078 9.48 x 107t 479 x 1072 23
0.0 -0.5 0.5 100. 100. 32. 9. 129 x 107¢ 546 x 107 1.48 % 1072 C24
10 -5 0.3 100. 50. 30. 18. 120 X 107 297 x 1078 6.60 X 1073 C25
0.1 —-0.5 0.5 100. 50. 32 5. 226 X 1078 9.72 x 107 8.35 x 107} C26
10.0 -0.5 0.5 100. 50. 20. 32, 3.40 x 1073 1.88 x 1072 1.07 X< 10 Cc27
1.0 ~0.9 0.0 100, 100. 26. 29. 1.49 x 107¢ 8.86 x 107° 5.28 x 107? C28
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1.9 1
u(q(s))
0.9
u(z)

3 _01
-1.1 4

-2.1 . T r

-1.0 -0.5 0.0 0.5 1.0
sorzx
FIG. 1. Equation (13) plotted as a function of both s and x. Parameters

are as in the second entry in Table L.

for functions exhibiting single layer behavior. Employing 61
collocation points we find results very similar to those obtained
in Tables I and II for the two layer case with 8 = 1 and with
121 collocation points. These results indicate that with the
appropriate choice of mappings the accuracy of the approxima-
tion of similar layers roughly scales with the number of colloca-
tion points per layer. In Figs. 1 and 2 we plot (13) and (14)
respectively as both functions of x and s. In each case the
function and the mapping are those associated with the second
row in Tables 1 and [, respectively.

The penalty term y(a;; + ay) is important in preventing
excessive resolution of each layer. The choice y = 1 employed
for all calculations presented here appears reasonably effective
in controiling this phenomenon in the determination of mapping
parameters. No attempt has been made to tune vy for each case.
The accuracy of the approximation is robust to changes in y.
In order to illustrate this we consider the approximation for the
case C16, where both the amplitudes and thicknesses of the

u(z)
3 u{q(s))

0.0 T T T
=1.0 -0.5 .0 0.5 1.0

sorx

FIG. 2. Equation (14) plotted as a function of both s and x. Parameters
are as in the second entry in Table [I.

BAYLISS, CLASS, AND MATKOWSKY

TABLE 111
Effect of v on the Approximation of Case C16

Y oy 0y Ey E, E,

1.0 20. 3. 3.20 x 107° 549 x 107 1.70 X 107!
0.5 26. 4. 1.98 x 107 445 x 1073 1.21 X 10~
1.5 16. 2. 3.15 X 107 4,54 % §07? 4.53 X 1Q°

two layers are highly disparate and the errors listed in Table [
are relatively large compared to most of the other cases. In
Table IIl we illustrate the errors for three different values of
. For this case increased accuracy is obtained for values of
v < 1. Increasing <y leads to a reduction in @, and @3, in
particular leading to significantly reduced resolution of the
thicker layer. All of these results are orders of magnitude
smaller than for the unmapped case. In solving partial differen-
tial equations it is often possible to identify poor choices of
parameters, for example by oscillations in the solution, and to
improve the computation by adjusting the calculation of the
mapping parameters.

We next illustrate the effect of inaccurate specification of
the location parameters e, and @,. In practice the locations
of the layers will not be known exactly. For example, the
algorithm employed to specify the locations of the interfaces,
€.g., in combustion the maxima of the reaction rate terms, might
be imprecise. In many cases there may be variations in the
flame location with respect to a transverse coordinate or coordi-
nates, e.g., a cellular pattern along the flame front. A general
two-dimensional adaptive procedure, in which the parameters
are taken as functions of a fransverse coordinate is described
in {4] and is applicable to the mapping family (7). In many
instances, however, the mapped Chebyshev pseudo-spectral
is sufficiently accurate that mappings with a single location
parameter, taken as the average across the reaction zone, can
resolve the nonplanar state.

In order to deal with such problems it is important to under-
stand the robustness of the mapping family (7) with respect to
the location parameters a, and «,,. We demonstrate the effect
of inaccurate specification of these parameters in Table IV, In
constructing this table we have fixed oy = —ay = —0.5 and
have varied the centers of the layers v, and x,. Results are
presented for (13) (with o = a5 = 50.) and (14) o) = o, =
100.) with § = 1.

For these parameters the thickness of each layer is approxi-
mately 0.2 for (13) and 0.1 for (14). When 121 collocation
points are employed deviations between the layer location and
the location parameter of approximately 10% of the layer width
can be accomodated before relatively large errors appear in the
second derivative. Since for fixed mapping parameters the rapid
convergence of spectral methods still occurs [10] a relatively
small increase in J can significantly reduce the error, even for
the second derivative.
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TABLE IV

Results for Imperfectly Approximating Layer Locations

u(x) J x X oy oy Ey E E,

(13 120 —0.525 0.525 17. 17. 5.58 x o1 3.34 x 107¢ 1.36 X 10°°
(13) 120 —-04758 0475 17. 17. 6.61 X 10~ 424 ¥ 107¢ 728 X 10
(13} 120 —0.43 0.45 13, 13. 6.90 x 107¢ 334 x 1077 1.02 X 10°
(13 160 —0.45 0.45 13. 13. 1.88 x 1077 1.11 x 107 1.83 % 107?
(14 120 —0.5125 0.5125 28. 28. 7.90 x 1071 5.46 X 1073 771 X 1678
(14) 120 —(.4875 04875 27. 27. 1.07 X 1078 8.94 x 107 339 x 107!
(14) 120 —0475 0475 23. 23, 209 x 10°° 1.30 X 107 398 x 10°
(14) 160 —0.475 0475 23 23, 432 x 1077 232 x 10 1.32 x 107!

The first and fifth rows of Table IV are slightly more accurate
than the corresponding calculations with x, = —x, = 0.5 (i.e.,
cases C11 and C21 in Tables 1 and II, respectively). We believe
that this is primarily due to the values of «,, and a,, chosen
by the adaptive procedure. For (13) similar results occur for
x; = —x; = 0.535. As the locations of the layers move further
from £0.5 the errors increase, as would be expected. Although
we have not extensively studied the error as a function of x,
and x,, the computed errors are orders of magnitude below the
unmapped case for x; = —x, = 0.555. Similar results {(not
shown here) have been obtained for x, # —x,. We note that
the errors are smaller when the actual layer locations (x, and
Xy satisfy x| << &y and x; > ey, and that it may be advantageous
to ensure this in computations. We believe that this is due to
insufficient resolution in the mapping (7) in the region between
the two layers (ie., for @ = x = @) in (7). It is possible
that replacement of tan ™' by a different, although similar, func-
tion might ameliorate this.

This last point is further emphasized in Table V, where
we consider two layers modulated by an oscillatory function;
specifically we consider the function

u{x} = {1 + & cos{wx))(tanh(or;(x — x,))

Functions of the form (15) describe two layers modulated by
a small scale, global oscillation. We consider the case & = 0.1,
oy = ¢y = 50, x; = —x; = 0.5, and the approximation is
constructed using J = 120. In Table V two cases are considered;
6 = 1.0 and & = 0.9 which we denote by the identifiers C51
and C52, respectively.

These cases are chosen to illustrate the behavior of the map-
ping in approximating layers with a superimposed fine scale
structure. We note that (15) is a more severe test than would
likely hold in many applications because the modulation is
global rather than localized around the layers. For both cases
the structure of the modulation is similar for |xi > (.5, Le., in
the region between the layers and the boundaries. However,
for [x| < 0.5, i.e., in the region between the layers, the resulting
function is 0 for & = 1.0 whiie it consists of a nonzero modula-
tion for § # 1.0. In both cases the location parameters are
specified at the center of the layers, @, = x|, oy = X3, while
the parameters ¢, and «;,, are chosen as described above.

The functional (8) is sufficiently sensitive to detect the modu-
lation by reducing the resolution of the layers (i.e., @, and oy,
are reduced from the values that they would have if there
were no modulation). Furthermore, the reduction in resolution
increases as @ increases as would be expected since the wave-

15) length of the modulation decreases. The errors are considerably
+ Stanh{o,{x — x,))). larger for case C52. This indicates that the modulation between
TABLE V

Results for Approximating #(x} = (1 + gcos(wx)) tanh(ox —

x ) + Stanh(oy(x — x3)

5 ® o oy Ey E, E, 1D
1.0 10, 17. 7. 2.50 x 1g7® 3.57 X 1078 178 X 107° Csl
1.0 20, 12 12, 1.23 % 107} 7.67 X 107% 149 x 1077 C5l1
1.0 30. 9. 9. 7.35 X 1077 343 x 107 1.10 x 1071 C51
1.0 40. 8. 8. 4.10 X 107 147 » 1073 452 X 107! CSsi
1.0 10. 18. 16. 462 X 107 336 X 1072 933 X 10° Cs2
1.0 20. 11. 13. 1.42 % 1072 3.96 x 1072 6.80 X 10° C52
1o 30, 9. 8. 1,39 % 1077 542 x 1077 4,87 % 1Q° 52
1.0 40, 8. 9. 8.39 x 1073 3,19 x 107! 1.08 x 10 Ccs2
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the layers and the boundaries is well resolved by the mapping.
‘When there is sufficiently rapid oscillation in the region between
the two layers, accuracy is degraded due to the behavior of the
mapping family (7} in underresolving this region, an effect
which could likely be ameliorated by choice of a different but
similar function.

We next illustrate the behavior of the mapping family (7) in
the solution of partial differential equations. We consider the
problem of combustion in counterflowing jets [16]. In this
problem, there are two jets of a premixed combustible mixture
emanating from oppositely placed locations. Associated with
each jet a flame will form at a certain distance from the jet.
Thus two distinct flames will exist. The distance between the
flames will depend on the velocity of the jet as well as on
parameters of the mixture. Due to the spreading of the jets each
flame will be streiched.

We neglect bouyancy effects and consider the diffusional
thermal model in which the thermal expansion of the gas is
assumed to be weak [18]. In this model the flow field is assumed
to be unaffected by the chemical reactions. The transport of
heat and species can be computed from a system of advection
diffusion equations with the prescribed flow field as a coeffi-
cient. We further assume that the reaction is limited by a single
deficient component and is governed by one-step, irreversible
Arrhenius kinetics.

If dimensional quantities are denoted by ~ the unknowns are
the temperature 7 and the concentration € of the deficient
component. T, and T, are the temperatures of the unburned
and burned gas, respectively. The unburned value of € at one
of the jets is €,. The concentration of the deficient component
may differ at the opposing jet. Other dimensional quantities
are the coefficient of thermal conductivity A, the activation
energy E, and the gas constant R. We introduce the nondimen-
sional reduced temperature and nondimensional concentra-
tion by

0 =(T~ Ty, -1y, C=Cic.

The spatial and temporal variables are nondimensionalized by

et

oE X,

t:—~, _xl.z

~p
>-1|

where [/ is the planar adiabatic flame speed for the case of
infinite activation energy in which the reaction term is replaced
by a surface delta function. We employ Cartesian coordinates (x,
v) and assume that the opposing jets are both of nondimensional
strength K and are located at x — = . The nondimensicnalized
flow velocity is

Y = (Kx, — Ky),

so that there is stretching of planar flames in the y direction.
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We note that as X increases combustion occurs closer to the
stagnation line x = 0. Thus as K increases the two flames
will move closer together, resulting in a greater interaction
between them.

The equations of the model are

0,= A6 — V-VO + CAexp (ﬂﬂe_—”)

S+(1-%)6
AC N =3} -1 ne
C,=E_V'VC_CAGXP(TW)‘

Here A is the Laplacian, ¥, = T,/T,, N = E/(RT,), Le is the
Lewis number, the ratio of thermal to mass diffusivity, and
A =Z7?/2Le), where Z = N(| —~ 2)isthe Zeldovichnumber. We
note that A, which is referred to as the flame speed eigenvalue,
depends on the nondimensionalization. The value employed
above arises from the use of the planar, adiabatic flame velocity
in the infinite activation energy limit, A different nondimen-
sionalization would change the spatial and temporal scales but
would not alter the basic patterns exhibited by the solution.
The boundary conditions are
C{OY—1(0),

asx—» — o0,

CO >0, asx— o0, (17
so that the concentration of the deficient component at the jet
located at + is $C,. When ¢ = 1 there is symmetry across the
stagnation line. As ¢ deviates from | the degree of asymmetry
between the two flames increases. In our computations these
boundary conditions are imposed at points x_., and x.., far from
the reaction zone where combustion occurs. The computed
results were found to be insensitive to x_, and x., provided
they were taken sufficiently far from the reaction zone. In the
two-dimensional solutions a Fourier method was used on the
domain —y. = y = v, with symmetry about y = 0 imposed.
The nonplanar states computed were localized around y = 0 and
¥ was taken sufficiently large so that there was no significant
influence of the boundary conditions on the transverse structure
of the flame front. The computations were performed at the
NCSA and NERSC.

We illustrate the adaptive procedure by both one-dimensional
solutions (i.e., sclutions independent of ¥) and solutions exhib-
iting localized nonplanar states, similar to those found in [11]
for the Kuramoto—Sivashinsky equation. In all computations

the following parameters were held fixed, ¥ = 20, % = 0.5 and

Le = (.5. All solutions reperted here are stationary solutions,
obtained by solving the time dependent system of partial differ-
ential equations until steady state is achieved. The temporal
integration is performed using the backward Euler scheme with
operator splitting. The reaction term is treated explicitly while
all other terms are treated implicitly. The temporal integration
method is described in detail in [6]. We employed 141 points
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~51.0

51.0
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in the x direction and, for the two-dimensional calculations, 64
points in the y direction. The functional {6) is evaluated for the
linear combination 0.5 (& + C).

We first illustrate the numerical method for 2 one-dimen-
sional calculations. In Fig. 3a we plot © and C as a function
of x for K = 0.05 and ¢ = 0.75. The collocation points deter-
mined from the adaptively chosen mapping are indicated on
the graph of C and demonstrate the high resolution of the two
separated layers of the solution obtained by adaptive choice of
the mapping (7). In describing the figures we refer to the flame
on the left as £, and the flame on the right as .. In this case
the flames are relatively separated. The effect of the reduced
concentration (¢ << 1) on F, is to cause a reduced burning
temperature and a flame front closer to the stagnation line x =
0. This can be also seen in Fig. 3b, where we plot the reaction
rate terms. The locations of the maxima indicate the locations
of maximal chemical conversion of the reactant (i.e., the flame
location), and the amplitudes are increasing functions of the
burning temperature. There is a transfer of heat from the hotter
Fto F,; however, it is relatively gradual, indicating only slight
interaction between the two flames. We remark that the tempera-
ture prefile is relatively flat in the burned region directly behingd
each of the flames.

In Fig. 4 we plot © and C as a function of x for K = 0.30
and ¢ = 0.75. Since the flames are closer there 13 a much
stronger interaction between them, which can be seen in the
large temperature gradient for the transfer of heat from Fy to
F.. Although the flames are now closely spaced, attempts to
compute this solution using (5) led to a noticeable increase
in oscillations.

We finally illustrate localized nonplanar flames which can
occur in certain parameter ranges. Such flames have been ob-
served in experiments [16]. These localized states arise due to
finite amplitude instabilities which occur for K sufficiently small
and can be a precursor to a (ransition to chaos for stretched
flames [11, 20). We have computed such localized states for
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-51.0 0.0

51.0

T

(2} & and C for flames in counterflowing jets, K = 0.05, (b) Reaction term for flames in counterflowing jets, K = 0.05.

the diffusionat thermal model for counterflowing jets using the
mapping {7). Here we present one such calenlation with ¢ =
095 and X = 0.6. In Fig. 5 we plot the computed flame
locations, taken as the maxima of the reaction term, as a function
of the transverse variable y. A localized nonplanar state can be
seen for F) while F| is planar. The planar behavior for F| is
due to the reduced burning temperature associated with the
smaller concentration, which leads to a reduced fluid velocity
at the location of the flame.

4. EFFECT ON CONDITIONING OF
DIFFERENTIATION MATRICES

We next consider the effect of the proposed mapping on
the conditioning of Chebyshev pseudo-spectral differentiation.
Since differentiation is a linear operator, the operation of differ-
entiating a function by the Chebyshev pseudo-spectral method
can be represented by a matrix operation. Specifically, if u is
any function and @ denotes the vector with components u; =

1.0 ©
c
0.5
0.0 -
-51.0 0.0 51.0
x

FIG. 4. © and C for flames in counterflowing jets, K = 0,30.
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FIG. 5. Flame location as a function of y for localized nonplanar state in
counterflowing jets, ¢ = 095, K = 0.30,

u(s;), j = 0, ..., J, where s, are the Gauss—Lobatto points (11),
then the operator producing u'(s;),j = 1, ..., J, can be represented
by the matrix vector product Df.

The matrix D is known explicitly and has elements which
grow as J2. While D itself has only the single eigenvalue 0,
when appropriate boundary conditions are introduced D has
eigenvalues which are G(J?) [10]. Similarly, the condition num-
ber for matrices representing second derivatives is O(J*). This
leads to an ill-conditioning associated with Chebyshev pseudo-
spectral differentiation which results in both severe timestep
restrictions and possible loss of accuracy in computing deriva-
tives, e.g., [2, 9, 10, 12, 17, 22, 23].

It appears that this ill-conditioning is related to the clustering
of collocation points near the boundary. In [17] a mapping
which led to uniformly spaced collocation points in an appro-
priate singular limit was introduced. It was shown that in this
limit the spectral radius of the Chebyshev differentiation matrix
was reduced from O(/?) to O(J), where J is the number of
collocation points. However, the effect of a mapping in improv-
ing the conditioning of the resulting differentiation matrix must
be considered together with the effect of the mapping on the
accuracy, in approximating the desired function. It was shown
in [7] that the mapping proposed in [17] is not necessarily
effective for functions exhibiting layer type behavior.

Here we consider the effect of mappings appropriate to re-
solve layer behavior, in particular {5) and its extension (7),
on the resulting conditioning of the Chebyshev differentiation
matrix. When mappings are employed the resulting differentia-
tion matrix can be represented as the matrix product MD, where
M is the diagonal matrix with entries ds/dx evaluated at the
points (11). In order to illustrate the role of layer type mappings
on the conditioning of the matrix, we consider the matrix associ-
ated with the second derivative operator with homogeneous
Neumann boundary conditions, where we include the boundary
condition in the matrix, i.e., an indirect imposition of the bound-
ary conditions. Specifically, we construct the matrix D, =
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MDMT), where MD is the matrix MD with the first and last rows
set to 0. In order to avoid singularities we shift the spectrum of
D, away from the origin by working with the matrix D; =
I — D,, where I is the identity matrix.

When the layers are located away from the boundaries the
effect of the mapping family (5) (or (7)) is to reduce the cluster-
ing of collocation points near the boundaries. This suggests
that the computation of such layers may be accompanied by a
corresponding improvement in the conditioning of the differen-
tiation matrix. In order to illustrate this point and to give a
guide for which layers such improvement is to be expected,
we have computed the L, condition number C{(D3) for both the
mappings (5) and (7). In both cases we specify the location
parameters (e for (5) and «; and a4 for (7)), When we
employ (5) we compute C{D;) as a function of &, for the three
cases: (i) e = 0; (i1) oy, = —0.5; (iil) @z = —0.9. When we
employ (7) we specify o, = an and compute C(D3) as a
function of «, for the three cases: (i) &, = —~a,, = —0.05;
() a2 = —0.5; (il]) @)z = —axn = —0.9. For each mapping
the effect in cases (i) and (ii) is to expand interior regions at
the expense of the boundaries while in case (iii) one or both
of the boundary regions is expanded at the expense of the
interior (i.e., the clustering of collocation points near the bound-
aries, in the physical coordinate, is increased relative to the
unmapped case).

In Figs. 6 and 7 we plot C(D}) normalized by the condition
number for the unmapped Chebyshev method for (5) and (7),
respectively, for the three cases specified above with J = 120.
Similar results are valid for different values of J. The results
demonstrate that a significant improvement in the conditioning
of the differentiation matrix can be expected for a wide range
of @, (i.e., a range of layer thicknesses). In fact, the values of
ey, used in practice in our combustion computations lie in the
range where such a reduction occurs. Thus, for these values of
@, resolution of the layer has the additional advantage of
improving the conditioning of the differentiation matrix. At the

6.0

4.0 1
(i

0.0 A

0.0 20.0 40.0

NORMALIZED CONDITION NUMBER

60.0 80.0

o

FIG. 6. Coudition number for D as a functicn of &, employing (5). Cases
(1), (i) and (ii1) described in text. J = 120.
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FIG.7. Condition number for D; as a function of o, employing (7). Cases
(i), (i) and {iii} described n text. J = 120.

minima there is a reduction of nearly two orders of magnitude
in the condition number. When the layers are located close to
the boundaries (case (iii) for each figure) there is a significant
increase in the condition number for moderate values of «;.
We conjecture that for these values of «;; the overall density
of collocation points increases near the boundary leading to
the increase in condition number. For larger values of o, the
effect of the mapping is to expand layers at the expense of the
boundaries, thus resulting in a reduction in the clustering of
collocation points near the boundaries. This may be related to
reduction in the condition number for this case for larger values
of &y,

We next discuss the potential for using mappings to improve
the conditioning of Chebyshev differentiation for general func-
tions (i.e., functions not exhibiting layer type behavior). For
any particular function, errors in differentiation result from both
ill-conditioning of the differentiation operation and approxima-
tion errors. While the use of mappings such as (5) and (7} will
reduce approximation errors for functions exhibiting layer type
behavior, approximation errors can be increased for functions
which do not exhibit layer type behavior. However, for (3) the
maximal reduction in the condition number occurs for relatively
small values of a;, (&), = S for J = 120, ), = 8 for J =
256) for which the layer type nature of the mapping is not
pronounced. As a result there may be an overall reduction of
the error in Chebyshev differentiation for a wider class of
functions than those exhibiting layer type behavior at x = 0
{1.e., the reduction in numerical errors due to improved condi-
tioning can be more significant than the increase in approxima-
tion error due to the use of a layer type mapping for functions
which do not exhibit layer type behavior). '

In order to test this we considered the extreme case of the
approximation of polynomials x/, 0 = j = J. When no mappings
are employed there is no discretization error; i.e., all of the
error in Chebyshev differentiation is due to round off error.
When mappings are employed there will be both round-off
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error and approximation error, as the mapped Chebyshev ap-
proximation is no longer exact for polynomials. The approxima-
tion error for x/, which is nonzero when mappings are employed,
would be expected to increase with j since x/ varies slowly near
x = 0 for large j. Thus it would be expected that the use of
(5) or (7) as a condition number reducing mapping would lead
to an overall reduction in error for a range of j near 0 and an
increase in error for a range of values of j near J.

This behavior is illustrated in Fig. 8. The ratio of the maxi-
mum norm errors for the fourth derivative of x/ with the mapping
(5) (@), = 5, otz = 0) to the errors without mapping is plotted
for J = 120. The derivatives are computed using matrix multi-
plication with a straightforward computation of D using the
expression given in [10]; however, the diagonals are adjusted
50 as to maintain a null row sum as proposed in [2]. It can be
seen that errors are significantly reduced for j = J., where

» = f/4, an approximate scaling that we have observed for
other values of J as well. Similar results (although at much
lower values) were found for the approximation of the sec-
ond derivatives.

Thus, the use of (5) as a condition number reducing mapping
can ameliorate round-off error in the computation of higher de-
rivatives. Whether this is effective in any particular application
depends on the function being approximated. For polynomials
there is no discretization error with the unmapped method while
there is a discretization error when mappings are employed.
Thus, for sufficiently high degree polynomials the discretization
error with the mapping is large enough to overcome the improve-
ment in conditioning. (For functions which are polynomials in
g~ '(x, &) the opposite is true as there is no discretization error
when the mapping is employed.) Neither class of functions would
be expected to exactly occur in the solution of a system of partial
differential equations; however, the results in Fig, 8 indicate that
improvement can occur for a large class of functions, including
functions which do not exhibit layer behavior. For functions
which do exhibit layer behavior, the results suggest the possibil-

LOG OF RATIO OF ERROR

0.0 10.0 20.0

i
FIG. 8. Logarithm of the ratto of the maximum norm error in the fourth

derivative for x' for the mapped method to the unmapped method, The mapping
parameters are a;; = 5 and oe); = 0 S = 120,
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ity that including the condition number as a penalty term in the

m

inimization might be a technique to balance accuracy and con-

ditioning in the resulting adaptive procedure.

(s
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